Ferrichrome transport in Escherichia coli K-12: altered substrate specificity of mutated periplasmic FhuD and interaction of FhuD with the integral membrane protein FhuB.

نویسندگان

  • M R Rohrbach
  • V Braun
  • W Köster
چکیده

FhuD is the periplasmic binding protein of the ferric hydroxamate transport system of Escherichia coli. FhuD was isolated and purified as a His-tag-labeled derivative on a Ni-chelate resin. The dissociation constants for ferric hydroxamates were estimated from the concentration-dependent decrease in the intrinsic fluorescence intensity of His-tag-FhuD and were found to be 0.4 microM for ferric aerobactin, 1.0 microM for ferrichrome, 0.3 microM for ferric coprogen, and 5.4 microM for the antibiotic albomycin. Ferrichrome A, ferrioxamine B, and ferrioxamine E, which are poorly taken up via the Fhu system, displayed dissociation constants of 79, 36, and 42 microM, respectively. These are the first estimated dissociation constants reported for a binding protein of a microbial iron transport system. Mutants impaired in the interaction of ferric hydroxamates with FhuD were isolated. One mutated FhuD, with a W-to-L mutation at position 68 [FhuD(W68L)], differed from wild-type FhuD in transport activity in that ferric coprogen supported promotion of growth of the mutant on iron-limited medium, while ferrichrome was nearly inactive. The dissociation constants of ferric hydroxamates were higher for FhuD(W68L) than for wild-type FhuD and lower for ferric coprogen (2.2 microM) than for ferrichrome (156 microM). Another mutated FhuD, FhuD(A150S, P175L), showed a weak response to ferrichrome and albomycin and exhibited dissociation constants two- to threefold higher than that of wild-type FhuD. Interaction of FhuD with the cytoplasmic membrane transport protein FhuB was studied by determining protection of FhuB degradation by trypsin and proteinase K and by cross-linking experiments. His-tag-FhuD and His-tag-FhuD loaded with aerobactin specifically prevented degradation of FhuB and were cross-linked to FhuB. FhuD loaded with substrate and also FhuD free of substrate were able to interact with FhuB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Albomycin uptake via a ferric hydroxamate transport system of Streptococcus pneumoniae R6.

The antibiotic albomycin is highly effective against Streptococcus pneumoniae, with an MIC of 10 ng/ml. The reason for the high efficacy was studied by measuring the uptake of albomycin into S. pneumoniae. Albomycin was transported via the system that transports the ferric hydroxamates ferrichrome and ferrioxamine B. These two ferric hydroxamates antagonized the growth inhibition by albomycin a...

متن کامل

Molecular characterization of the iron-hydroxamate uptake system in Staphylococcus aureus.

To investigate iron uptake, a chromosomal locus containing three consecutive open reading frames, designated fhuC, fhuB, and fhuD, was identified in Staphylococcus aureus. Whereas the fhuC gene encodes an ATP-binding protein, fhuB and fhuD code for ferrichrome permeases and thus resemble an ATP-binding cassette transporter. A fhuB knockout mutant showed impaired uptake of iron bound to the side...

متن کامل

The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter.

Bacterial binding protein-dependent ATP binding cassette (ABC) transporters facilitate uptake of essential nutrients. The crystal structure of Escherichia coli BtuF, the protein that binds vitamin B12 and delivers it to the periplasmic surface of the ABC transporter BtuCD, reveals a bi-lobed fold resembling that of the ferrichrome binding protein FhuD. B12 is bound in the "base-on" conformation...

متن کامل

Truncation of MalF results in lactose transport via the maltose transport system of Escherichia coli.

The active accumulation of maltose and maltodextrins by Escherichia coli is dependent on the maltose transport system. Several lines of evidence suggest that the substrate specificity of the system is not only determined by the periplasmic maltose-binding protein but that a further level of substrate specificity is contributed by the inner membrane integral membrane components of the system, Ma...

متن کامل

CONSTRUCTION OF RECOMBINANT PLASMIDS FOR PERIPLASMIC EXPRESSION OF HUMAN GROWTH HORMONE IN ESCHERICHIA COLI UNDER T7 AND LAC PROMOTERS

In order to study the periplasmic expression of human growth hormone (hGH) in Escherichia coli, the related cDNA was inserted in two expression plasmids carrying pelB signal peptide, one with lac bacterial promoter and the other with a bacteriophage T7-based promoter. The recombinant plasmids were moved to TG1 and BL21 strains of E. coli, respectively. To induce the expression systems, IPTG and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 177 24  شماره 

صفحات  -

تاریخ انتشار 1995